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SUMMARY

A boundary domain integral method (BDIM) for the solution of transport phenomena in porous media
is presented. The complete, so-called modified Navier–Stokes equations (Brinkman-extended Darcy
formulation with inertial term included) have been used to describe the fluid motion in porous media.
Velocity–vorticity formulation (VVF) of the conservative equations is employed. In this paper, the
proposed numerical scheme is tested on a particular case of natural convection and the results of flow
and heat transfer characteristics of a fluid in a vertical porous cavity heated from the side and saturated
with Newtonian fluid are presented in detail. Copyright © 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Transport phenomena in porous media arise in many diverse fields of science and engineering,
such as hydrology, civil and mechanical engineering, chemical and petroleum engineering. Civil
engineering deals, for example, with practical problems like the flow of water in aquifers, the
movement of moisture through and under engineering structures, the transport of pollutants in
aquifers, and heat transport in thermal insulation.

Over the past decades, porous media have been studied both experimentally and theoreti-
cally. With the advent of precise instruments and new experimental techniques, it has become
possible to measure a wide variety of physical properties of porous media and transport
phenomena therein. New computational methods and technologies have also allowed us to
model and simulate various phenomena in porous media, and thus a deeper understanding of
these problems is being gained on a perpetual basis.
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The term porous media usually refers to material consisting of a solid matrix and
interconnected pores. In the present work, we assume that the solid matrix is rigid, and on
account of the interconnectedness of the pores, the flow of the fluid is allowed to pass through
the matrix. Transport phenomena are fluid transport processes describing how various
extensive quantities, e.g. velocity, mass and heat, are transported through a porous media
domain.

When the temperature of the saturated fluid phase in porous media is not uniform, flows
induced by buoyancy effects occur. These flows, depending on density differences due to
temperature gradients and the pertinent boundary conditions, are commonly called free or
natural convection. Due to its numerous applications in energy-related engineering problems,
the natural convection is gaining, over the past decade, strongly enhanced interest and has
become one of the most commonly studied transport phenomena in porous media. Studies
have been reported dealing with different geometries and a variety of heating conditions. For
example, a vertical cavity in which a horizontal temperature gradient is induced by side walls
maintained at different temperatures has been analysed [1,2]. Others have examined the natural
convection in porous layers heated from below [3,4]. In all of these studies, use has been made
of Brinkman-extended Darcy formulation as a governing momentum equation, because in
earlier works it has been well established that the pure Darcy law does not give satisfactory
results when one wants to take into account the no-slip boundary condition [5].

The numerical methods often used for the solution of governing equations, which in most
cases are written in vorticity–stream function formulation, are the finite difference method
(FDM) and the finite volume method (FVM). The objective of the present work is to examine
the Brinkman-extended Darcy formulation with the transport term included as applied to the
case of natural convection in porous cavity heated from the side, utilizing an approach based
on the boundary domain integral method (BDIM) [6]. The main advantage of the proposed
BDIM scheme, as compared with classical domain-type numerical techniques, is that it offers
an effective way of dealing with boundary conditions on the solid walls when solving the
vorticity equation. Namely, the boundary vorticity in the BDIM is computed directly from the
kinematic part of the computation (as described by the Equation (4)) and not through the use
of some approximate formulae.

2. GOVERNING EQUATIONS

In principle, the equations that formulate various transport phenomena in porous media are
known and may be written at the microscopic level. However, at this level they can not be
solved, as the geometry of the surface that bounds the phase is not observable and/or is too
complex to be described adequately [7]. Another level of description is therefore needed;
namely, the macroscopic level, at which the measurable, continuous and differentiable quanti-
ties may be determined and boundary value problems can be stated and later solved. The
macroscopic constitutive equations for the multiphase system, called porous media, are
obtained by averaging the governing microscopic equations valid for pure fluid over the
representative elementary volume (REV), keeping in mind that only the distinct part of the
REV (expressed with porosity f) is available for the fluid flow [8]. The averaging process over
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suitable REV, which has to be determined such that, irrespective of its position in porous
media, it always contain both a persistent solid and a fluid phases, results in the system of
governing equations describing transport phenomena in porous media which consists of

continuity equation
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where 6i, f, K are filtration velocity, porosity and permeability of porous media respectively.
The vector field functions gi and xi represent gravity and position, while the scalar quantities
P=p−rgiri and T are modified pressure and temperature. The material property r describes
the mass density, assumed to be a constant, and sij stands for the strain rate tensor,
sij=

1
2((6i/(xj+(6j/(xi). The normalized density–temperature variation function F is written as

F= (r−r0)/r0= −bT(T−T0), with r0 denoting the reference mass density at temperature T0

and bT being the thermal volume expansion coefficient. The material property g=m/r is the
kinematic viscosity and is partitioned into its constant and perturbated part as g= ḡ+g¦.
Coefficient s represents the ratio between the volumetric heat capacity of solid and fluid
phases and reads s=f+ (rscs/rc)(1−f), where rs and cs stand for mass density and specific
isobaric heat of (only) the solid part of porous media. Finally, the coefficient āp is the constant
part of thermal diffusivity and a¦p is the perturbated part of thermal diffusivity, such that
ap= āp+a¦p, where thermal diffusivity is calculated as ap=lp/rc, and lp is the heat conductiv-
ity of porous media defined as lp= (1−f)ls+fl, with ls denoting a heat conductivity of the
solid.

As is known, the Brinkman extension expresses the viscous resistance or viscous drag force
exerted by the solid phase on the flowing fluid at their contact surfaces. With the Brinkman
equation one is able to satisfy the no-slip boundary conditions on an impermeable surface,
which bounds the porous media. The novelty in our work is that the Brinkman term, as
appearing in Equation (2), consists of two parts. The first part, well known in the literature,
is a constant and the second one consists of the term that enables us to include the possibility
of general viscosity variation in the computation, a fact of particular importance when dealing
with non-Newtonian saturating fluids. It is important to stress that the Brinkman equation is
essentially an interpolation scheme between the Navier–Stokes and Darcy equations. It is well
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known [2–8] that, in the limit when the porosity approaches unity (f�1) and consequently
the permeability tends towards infinity (K��), the Brinkman equation transforms into the
classical Navier–Stokes equation for a pure fluid. Meanwhile, for the permeability converging
to zero (K�0), the Brinkman term becomes negligible and the Darcy law is than recovered.

Due to the general complexity of transport phenomena in porous media we have utilized
certain assumptions and suppositions as follows:

– the solid phase of the porous media is homogeneous, isotropic and non-deformable (i.e.
rigid) substance;

– the fluid phase is described as an incompressible, viscous, single phase;
– porous media are saturated—meaning that the fluid occupies the entire void space;
– the two average temperatures, Ts for the solid phase and Tf for the fluid phase, are assumed

to be identical in the same REV, so that the thermal behaviour of the porous media is
described by a single equation for the average temperature TTsTf.

In the BDIM, the obtained set of partial differential equations (PDEs) (1–3), also called the
modified Navier–Stokes equations, are further transformed by using the velocity–vorticity
variables formulation (VVF) [9]. With the vorticity vector vi representing the curl of the
velocity field

vi=eijk

(6k
(xj

(4)

where eijk is the unit permutation tensor, the fluid motion computation scheme is partitioned
into its kinematic part, as given by the elliptic velocity vector equation
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and its kinetic part, as provided by the parabolic–hyperbolic vorticity transport equation,
obtained as curl of the momentum equation (2)
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(2vi

(xj (xj

+f2eijkgk

(F
(xj

+vj

(6i
(xj

−
f2g

K
vi+f

(

(xj

�
g¦
(vi

(xj

�
+
(fij

(xj

(6)

The t6 is so called modified vorticity time step t6= t/f, introduced only as a necessary
mathematical step allowing one to use the VVF principle on our momentum equation. The
quantity fij in the last term of Equation (6) is defined as fij=fg¦(9a ×sij).

To improve convergence and stability of the coupled velocity–vorticity iterative numerical
scheme, the false transient approach [10] is applied to Equation (5), resulting in the following
parabolic kinematic expression:
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where a is a relaxation parameter. It is obvious that the governing velocity equation (5) is
exactly satisfied only in the steady state (t��), i.e. when the artificial time derivative terms
vanish.

The boundary conditions assigned to the elliptic kinematic velocity equation (5) are
generally of the first and second kind

6i= 6̄i on G1;
(6i
(xj

nj=
(6i
(n

on G2 (8)

The Diriclet boundary conditions arise when the velocity is prescribed over the whole surface.
In this case, normal derivatives of the velocity components are the unknown boundary values
in the set of kinematic equations, assuming known vorticity distribution in the solution
domain. Additional difficulties appear when the velocity vector is not known a priori over part
of the surface, i.e. outflow regions. In such cases, a reasonable choice is to assume zero velocity
normal flux values through the specific part of the boundary.

The most critical computation part of the kinematics is the determination of the new
boundary vorticity values, which are the only proper physical boundary conditions associated
with the parabolic kinetic equation (6), as written for the whole boundary
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are the only unknown boundary values in the vorticity kinetics.
The mathematical description of the energy kinetics is completed by providing suitable

natural and essential boundary conditions as well as some initial conditions
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3. BOUNDARY DOMAIN INTEGRAL EQUATIONS

3.1. General non-linear parabolic diffusion–con6ecti6e equation

Consider a non-linear time dependent diffusion–convective equation for an arbitrary conserva-
tive scalar field function u (velocity, vorticity, temperature) in the form
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where D/Dt represents the substantial or Stokes derivative and Iu is the source term.
Substituting the expression for the diffusivity variation in the form of a constant ā and variable
part a¦, so that a= ā+a¦, Equation (12) may be partitioned into a linear and non-linear parts
in the following manner:
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The equation represents a parabolic initial-boundary value problem; thus some boundary and
initial conditions have to be known a priori in order to complete the mathematical description
of the problem

u= ū on G1; −k
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The parameters a and k are defined according to the considered conservation laws and
corresponding constitutive hypothesis.

In the transformation from PDEs to integral equations, we consider two different non-ho-
mogenous equations, namely the modified Helmholtz PDE for the kinematic and diffusion–
convective PDE for the kinetic part of the computation.

By using a finite difference approximation for the time derivative of the field function, where
the time increment is defined as Dt= tF− tF−1, one has
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and Equation (13) can be rewritten in a non-homogenous modified Helmholtz PDE form [9],
with the following corresponding integral representation:
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where the variable u* is the modified Helmholtz fundamental solution [11].
The most adequate and stable integral representation could be formulated by using the

fundamental solution of steady diffusion–convective PDE with reaction term [12]. Since it
exist only for the case of constant coefficients, the velocity field has to be decomposed into an
average constant vector 6̄i and a perturbated vector 6¦i , such that 6i= 6̄i+6¦i . Once again, the
use of a non-symmetric finite difference approximation of the time derivative permits one to
rewrite Equation (13) into the non-homogenous diffusion–convective PDE [12], with the
following corresponding integral formulation:
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with U* being the product of the diffusion–convective fundamental solution and the constant
part of diffusivity as U*= āu*, where u* is the fundamental solution of the steady diffusion–
convective PDE with first-order reaction term [11].

3.2. Modified Na6ier–Stokes equations

The integral representation of the modified Navier–Stokes equations for the conservative field
functions, i.e. velocity, vorticity and temperature, can be readily obtained following the
integral statements developed above for the general transport equation (13).

As computational results in the present work are limited to the two-dimensional case, all the
subsequent equations will consequently be written for the case of a planar geometry only.
Considering that each component of the velocity vector 6i, Equation (7), satisfies the non-ho-
mogenous modified Helmholtz PDE subject to the corresponding boundary and initial
conditions, as given by Equation (8), applying the integral formulation given by Equation (16),
we obtain the boundary-domain integral statement for the planar flow kinematics
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describing the time-dependent transport of velocity field 6i in porous media. Parameter b is
defined as b=1/aDt and u* is the modified Helmholtz fundamental solution [13], which takes
into account the effects of geometry, time step and material properties.

Considering that the vorticity v and temperature T, as described by Equations (6) and (3),
obey the non-homogenous diffusion–convective PDE, subject to the normal, essential and
initial conditions as given by Equations (9)–(11) respectively, applying the integral formulation
as given by Equation (17), we obtain the boundary-domain integral statement for the planar
6orticity kinetics
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describing the time-dependent transport of vorticity v in the porous media domain. The
parameter b is defined as b=1/fḡDt6, U*= ḡfu* and u* is the elliptic diffusion–convective
fundamental solution of the steady diffusion–convective PDE, with first-order reaction term,
considering the effects of geometry, material properties, modified vorticity time step and
velocity [13]. Finally, we obtain the boundary–domain integral statement for the planar heat
energy kinetics
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describing the time-dependent transport of temperature T in porous media. Here, once again
b is defined as b=1/sDtT and tT is the modified temperature time step introduced only for
the proper mathematical treatment of the heat energy equation (3), as tT= t/s. As previously,
U*= āpu* and u* is the fundamental solution of the steady diffusion–convective PDE with a
first-order reaction term [13].

4. DISCRETIZED BOUNDARY DOMAIN INTEGRAL EQUATIONS

4.1. Formulation for general non-linear partial differential equation

Searching for an approximate numerical solution, the corresponding integral equations are
written in a discretized manner [14]. The integrals over the boundary and domain are
approximated by a sum of integrals over E individual boundary elements and C internal cells
respectively. The variation of field functions or their products within each boundary element
or internal cell is approximated by the use of appropriate interpolation polynomials. After
applying the discretized integral equations to all subdomain boundary and internal nodes, the
following implicit matrix systems can be obtained for the modified Helmholtz PDE:
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and for the diffusion–convective PDE:
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To improve the economics of the computation and thus widen the applicability of the
proposed numerical algorithm, the subdomain technique has been chosen [15]. The idea is to
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partition the entire solution domain into subdomains to which the same discretized numeri-
cal procedure can be applied. The final system of equations for the entire domain is then
obtained by adding the sets of equations for each subdomain considering the compatibility
and equilibrium conditions between their interfaces, resulting in a more sparse matrix
system, suitable to be solved by iterative techniques. For instance, the following conditions
may be applied on the interface indicated with G1 between subdomains V1 and V2:

u �I1=u �I2, k
(u
(n

)
I

1

= −k
(u
(n

)
I

2

(23)

The discrete model is based on a substructure technique derived to its limit version follow-
ing the concept of finite volume, e.g. that each quadrilateral internal cell represents one
subdomain bounded by four boundary elements. The geometrical singularities are overcome
by using 3-node discontinuous quadratic boundary elements combined with 9-node corner
continuous internal cells.

4.2. Formulation for modified Na6ier–Stokes equations

The discretized integral representations for the modified Navier–Stokes equations could be
obtained by following the solution procedure as developed above for the general conserva-
tion field function u. Using the discretized equation (21), having in mind the boundary–
domain integral equation (18), the following implicit matrix system is obtained for the
kinematic :

[H ]{6i}= [G ]
!(6i
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"
+eij [G ]{vnj}−eij [Dj ]{v}+b [D ]{6i}F−1 (24)

to be solved for unknown boundary velocity components or their normal derivatives respec-
tively, while the computation of all internal domain velocity components, if needed, is
performed in an explicit manner point by point.

Applying Equation (22) to the corresponding Equations (19) and (20), the implicit matrix
system for the 6orticity kinetics

[H ]{v}= [G ]
�g

ḡ
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is obtained to be solved for unknown boundary vorticity flux values and unknown domain
vorticity values, while the implicit matrix system for heat energy kinetics
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āp

n!(T
(n

"
−

1
āp
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is recovered in order to determine the unknown boundary temperature flux or boundary
temperature values and temperature internal domain values.

5. SOLUTION PROCEDURE

The kinematics given by Equation (24) and the velocity boundary conditions prescribed by
Equation (8) cannot assure a solenoidality of the velocity field for an arbitrary vorticity
distribution, so this property may be fulfilled only by coupling kinetic and kinematic
equations. Thus, the solenoidality conditions of the velocity and vorticity field requires a
coupled iterative solution of the non-linear dynamic system as given by Equations (24)–(26)
with the corresponding boundary conditions described by Equations (9)–(11). To obtain a
solution of the fluid motion problem, the following iterative steps have to be performed.

1. Start with some initial values for the vorticity distribution.
2. Kinematic computational part:

� solves implicit sets for boundary velocity or velocity normal flux values—Equation (24),
� transforms new function values from element nodes to cell nodes,
� computes the gradient of the velocity components,
� determines new boundary vorticity values—Equation (9),
� determines new boundary domain integral kinetic matrices, if the constant velocity

vector is perturbed more than the prescribed tolerance.
3. Energy kinetic computational part:

� solves implicit set for boundary and domain values—Equation (26),
� transforms new function values from element nodes to cell nodes.

4. Vorticity kinetic computational part:
� solves implicit set for unknown boundary vorticity flux and internal domain vorticity

values—Equation (25),
� transforms new function values from element nodes to cell nodes.

5. Relaxation of all new values and the convergence examination. If the convergence criterion
is satisfied, then stop; otherwise go to step 2.

6. NATURAL CONVECTION IN POROUS CAVITY

To check the validity of proposed numerical procedure we will discuss the problem of natural
convection in a vertical porous cavity. The description of the physical problem is shown on
Figure 1 and represents a two-dimensional, vertical cavity filled with an isotropic, homoge-
neous, Newtonian fluid-saturated porous media. One vertical wall of the cavity is isothermally
heated, the other is isothermally cooled, and the horizontal walls are adiabatic.
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Figure 1. Geometry and boundary conditions for porous cavity.

The thermo-physical properties of the solid and the fluid are assumed to be constant except
for the density variation in the body force term. Assuming that the solid particles and the fluid
are in thermal equilibrium, the governing equations are written in the form of Equations
(1)–(3). The computations have been carried out for the complete Brinkman-extended Darcy
model with the transport term in the momentum equation included. Whenever we consider the
Brinkman term, we have to deal with a parameter called the Darcy number, Da [1], appearing
as the ratio between the permeability and the characteristic length multiplied with the viscosity
ratio L, which is, in our case, equal to the reciprocal value of porosity (L=1/f). We must
stress that, with the use of the BDIM, the Darcy number is not explicitly derived as we are not
employing the non-dimensionalized formulation of the governing equations, which is the
common procedure used with other numerical methods. We will use that parameter only for
the reason of comparison with the published results, noting that the permeability itself
completely defines the characteristics of porous media when the BDIM is used. Thus, the
governing parameters for the present problem are

– porosity f,
– modified (porous) Rayleigh number Ra*=gbKDDT/gap,
– permeability of porous media K, defined in the terms of the so-called Darcy number as

Da= (1/f)(K/D2),
– aspect ratio A=H/D,
– ratio between volumetric heat capacity of solid and fluid phase defined as the so-called heat

capacity ratio s=f+ (rscs/rc)(1−f),

where D, H, DT are the width of the cavity, the height of the cavity and the temperature
difference between hot and cold walls respectively. Parameter b is the isobaric coefficient of
thermal expansion of the fluid.

We have tested our numerical model on several different cases and therefore we can confirm
the findings of others [1,2,5], that the effect of an increase in the Darcy number appears to be
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very similar at all modified Rayleigh numbers, although it is known that the effect of the
viscous (Brinkman) term becomes more important at high modified Rayleigh numbers. The
proposed BDIM scheme has been verified in a square cavity with aspect ratio A=1 and
because of the above-mentioned similarity we graphically present only one example, for
Ra*=500, in order to outline the relevant characteristics that are common to all modified
Rayleigh numbers.

The boundary conditions for computed test examples are

6̄x= 6̄y=0 for x=0, D and y=0, H
(T
(y

=0 for y=0, H

T( =T( H=0.5 for x=0

T( =T( C= −0.5 for x=D

The streamlines and isotherms for a square cavity with aspect ratio A=1, modified Rayleigh
number Ra*=500 and different Darcy numbers Da=10−1, 10−2, 10−3, 10−4, are presented

Figure 2. Streamlines for A=1, f=0.5, DT=1, Ra*=500; (a) Da=10−4, (b) Da=10−3,
(c) Da=10−2, (d) Da=10−1.

Figure 3. Isotherms for A=1, f=0.5, DT=1, Ra*=500; (a) Da=10−4, (b) Da=10−3,
(c) Da=10−2, (d) Da=10−1.
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in Figures 2 and 3. A computational mesh of 10×10 subdomains is used. Time steps ranged
from Dt=1016 (steady state) for Da=10−1, Dt=10−1 for Da=10−2, Dt=10−2 for Da=
10−3 to Dt=10−3 for Da=10−4 and the convergence criterion was selected as o=0.00001.
The porosity is equal to f=0.5 and the heat capacity ratio to s=1.

The streamlines in Figure 2(a) are observed to be closely spaced near the solid boundaries.
This configuration indicates that the fluid velocity reaches a maximum near the boundaries as
expected, since in the limit when Da=0 (Darcy law), the velocity has a maximum on the
boundaries. In this case, Da is small enough so that the viscous term, which is responsible for
the boundary effects, becomes negligible and the Darcy law correctly describes the flow
behaviour. Figure 2(b)–(d) illustrates typical results obtained on the basis of Brinkman model
for various values of Da. It is evident that when the Darcy number increased, the boundary
effects on the flow field become significant and the streamlines are observed to become
relatively more sparsely spaced near the solid boundaries. This is so due to the fact that the
viscous term (Brinkman term) becomes gradually more important and slows down the fluid in
the neighbourhood of the solid walls. It is also observed that the region where the flow attains
maximum velocity, as indicated by closely spaced streamlines, moves away from the walls
towards the core region as Da is increased.

Similarly, we can observe the effects of Darcy numbers on the isotherms or on the
temperature field (Figure 3). When the Darcy number is small—Figure 3(a)—the convective
motion inside the cavity is strong and the isotherms are considerably distorted. The flat
isotherms in the core indicate a negligible lateral conduction. As Da is increased, the viscous
effects become more important and slow down the buoyancy induced flow inside the cavity.
The isotherm profiles become more linear and heat transfer across the cavity results from the
combined action of conduction and convection.

From the above-presented results we can clearly observe that the streamlines and isotherms
redistribution are almost identical for Da= 10−4 and Da= 10−3, but with a further increase
in the Darcy number (that means with an increase in permeability K), the velocity and
temperature fields are starting to becomes significantly modified.

In what follows we will compare our results with the findings of others for which the work
of Lauriat and Prasad [1] has been chosen. The rate of heat transfer expressed with the average
Nusselt number Nu=	0

1 (T/(n dy for different modified Rayleigh numbers are collected in
Table I, where in brackets the results from Reference [1] are presented. The straightforward
comparison is not fully possible because, in above-mentioned study, the authors have calcu-
lated the Nusselt number considering the Brinkman momentum equation in which the
transport term had been assumed to be negligible, while in our work the computations have
been made on the basis of the complete Brinkman equation in the form as given by Equation
(2). Also we employ the viscosity ratio L equal to the reciprocal value of porosity [8], while
Lauriat and Prasad have taken this ratio equal to unity. Therefore, their results can be used
by replacing the modified Rayleigh number Ra* in their formulation with Ra* multiplied by
factor 2 (f−1=0.5−1=2).

The average Nusselt number is presented in Figures 4 and 5 for A=1, modified Rayleigh
numbers Ra*=100, 200, 500 and 1000, and different Darcy Numbers 10−55Da510−1. As
expected, the Nusselt number approaches the conduction value (Nu=1) when Ra* approaches
zero (Ra*�0). Also, the Nusselt number always increases with Ra*, but the effect of the
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Table I. Average Nu numbers (values in brackets after Lauriat and Prasad [1]).

100 200Da/Ra* 500 1000

1.026 1.061 1.37010−1 1.815
— — — —
1.479 2.01610−2 2.823 3.691
(1.46) (1.70) (2.58) (3.30)
1.816 2.66610−3 4.030 7.410
(1.88) (2.41) (3.80) (5.42)
1.895 2.71810−4 4.370 7.921
(2.14) (2.84) (4.87) (7.37)
2.010 2.76510−5 4.474 8.200
(2.15) (3.02) (5.37) (8.41)

Figure 4. Average Nusselt number for 100BRa*B1000 and 10−55Da510−1.

Darcy number is just the reverse. From Figure 5 we can clearly observe that the effect of the
viscous Brinkman term becomes negligible when DaB10−3, which is in complete accord with
the observations of others that solved the same problem utilizing, however, different numerical
methods (for example the FDM in Reference [1]).

Using the BDIM we are therefore in position of confirming the basic fact which states that,
when considering the problem of natural convection in configurations bounded by a solid wall,
the Brinkman momentum equation ought to be used. The Brinkman equation namely satisfies
the non-slip boundary condition on the impermeable walls that bound the porous media
domain and gives physically more realistic results (especially when Darcy number is beyond
10−3) than if the classical Darcy law is used as a starting momentum equation.
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Figure 5. Effect of Darcy number on the average Nusselt number.

7. CONCLUSION

A numerical approach based on the BDIM is being applied for the solution of the problem of
natural convection in porous cavity. The solution is based on the VVF of the modified
Navier–Stokes equations, which allows the separation of the computational scheme into its
kinematic and kinetic part respectively. The elliptic modified Helmholtz fundamental solution
is used for the kinematic part of computation, while the elliptic diffusion–convective funda-
mental solution is employed for the kinetic one. The limited version of the subdomain
technique, e.g. each subdomain is being constructed of four discontinuous 3-node quadratic
boundary elements and one continuous 9-node corner continuous quadratic cell, has been
applied. The proposed numerical procedure is studied, presented and discussed for the case of
natural convection in porous cavity heated from the side for different Rayleigh and Darcy
numbers. The very encouraging results obtained serve as a strong indication that the BDIM
possesses the potential to become a powerful alternative to the existing numerical methods for
solving certain class of transport phenomena in porous media.
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